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ABSTRACT

We study the oscillator equationsdescribinga systemof
coupleddc SQUIDs. Thecirculatingcurrentin eachSQUID
is inductively and globally coupledto the loop currentsin
the other SQUIDs. Justbeyond the onsetof spontaneous
oscillations the systemshows significantlyenhancedensi-
tivity to very weakmagneticfields. The ability to quantify
theoscillationfrequeny permitsits explotaitionasa detec-
tion/analysistool in remotesensingapplications.Herewe
presenguantitatve resultsaboutsuchoscillationfrequengy
andits scalingin termsof the control parametersandthe
numberof SQUIDs involved. For infinitely mary coupled
SQUIDs, the thermodynamidimit, we derive a nonlinear
Fokker-Planckequation. This mean-fieldequationallows
usto explorethevariousregimesof operationof the system
analyticallyaswell asnumerically

1. INTRODUCTION

The studyof nonlineardynamicalbehaior in systemghat
undego bifurcationsvia changinga controlparameteis of
considerablénterest[1]. Whentunednearthe onsetof bi-
furcations dynamicakystemsandisplayanenhanceden-
sitivity to externalperturbationswith the responsecharac-
terizedby signalamplification,oftenwith a concommittant
lowering of anervironmentalnoise-floor but also(depend-
ing on the parameterspotentially adwerseeffectse.g. the
amplificationof ernvironmentalfluctuationswith anaccom-
parying lowering of theresponsé&SNR. Amongthe nonlin-
ear systemghat have beenstudiedin recentyears,the dc
SQUID hasrecentlyreceived considerableattention,since
it is a device thatis severly constrainedy noisefloorissues
andonein which a detailedstudy of the (noise-mediated)
cooperatre behavior in various regimesof operationcan
yield clevertechniquedor confrontingnoise-relategerfor
mancessueghatconstraincurrentdevices.

Thedc SQUID [2] consistsof two Josephsojunctions
symmetricallyinsertednto asuperconductinpop,andchar
acterizedby atwo-dimensiona(2D) setof dynamicalequa-
tions for the junction Schibdingerphasedifferences. Our
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interestin the SQUID stemsfrom its relevanceasthe most
sensitve detectorof magneticfields, beingwidely usedin
a variety of fields including biomagneticsgeophysicsand
explosive detection.

Pastresearchactiities have focusedprimarily on de-
signing and developing sophisticatedshielding and noise-

cancellatiortechniqueso renderSQUIDs morenoise-tolerant.

Noise-mediatedooperatie behaior hasbeenstudiedby

us in the dc SQUID. Recentcalculations[3] showved that
the applicationof a target or “injection locking” signalat
(or slightly detunedfrom) the running frequeng, resulted
in alowering of the noisefloorat all frequenciesandmore
recentcalculations[4] have, in fact, revealeda true “reso-
nance”behaior in the response:a maximumin the aver-

ageloop screeningcurrentor its spectralamplitudeoccurs
whenthetamgetsignalfrequeng matcheshe deterministic
runningfrequeng.

In thispaperwe studythedynamicabehaior in aglob-
ally coupledensembleof dc SQUIDs in the presenceof
backgroundhoise. Therearelikely several differentways
to constructexperimentallya systemof globally coupled
SQUIDs. Onepossibleexperimentalscenariocould be the
following: a network of pickup coils is connectedn paral-
lel to senseand sumthe fluxesof all the SQUIDs. Some
of the resultingflux (dependingof the coupling strength)
is appliedto eachSQUID by feedingbackthe total output
currentthrougha feedbackcoil. Sinceevery SQUID can
interactmagneticallywith the next neighbor leadingto a
local-type coupling, it is advisableto place eachSQUID
into a shieldedenvironment. This form of coupling gives
rise to a nearglobal coupling similar to the one we have
proposedhere,with eachSQUID subjectto a flux dueto
all the otherSQUIDs in the sameway. Global couplingis
alsomostamenablgof all the possiblecouplingschemes)
to theoreticatreatment.

We studyour globally coupledsystembothanalytically
andnumerically finding thatthe systemexhibits staticand
oscillatory regimesof operation,completelyanalogougo
the single SQUID case,studiedearlier[5, 3]. Our analy-
sisstemsfrom the centermanifoldreductiontechniquethat
wasappliedto thesingle SQUID problem,andrecentlyde-
scribed semi-analytictechniquesfor solving the 2D FPE



associateavith the Langevin dynamics[6]. This previous
work is corvenientlygeneralizedo treatthe N-SQUID (N
may be arbitrary) casewith global coupling, but with non
identical SQUIDs.

Thepapelis organizedasfollows: After arapidoverview
of thedc SQUID dynamicsin section2, we presentanan-
alytical calculationof the frequeng of the running state
andits scalingin termsof the distancefrom the bifurcation
point. Finally (section4) we investigatethe effect of noise
on the coupledsystemdynamics. Our resultsare summa-
rizedanddiscussedn section5.

2. BACKGROUND AND MODEL EQUATIONS

In termsof the Schibdingerphaseanglesd; » of the two
(assumeddentical)Josephsojunctionswe canexpressthe
measureablscreeningurrent! in theloop:

B =bi— 6~ 2zt W
whereg = 27 LI,/ ®, is thenonlinearityparameterl, the
junction critical current, L the loop inductanceand ®, an
externalappliedmagneticflux, &, = h/2e beingthe flux
guantum. In the absenceof noise and a target magnetic
flux, we canusethe RSJmodelto write down equations
for thecurrentsin thetwo armsof the SQUID via alumped
circuit representationwhentransformedvia the Josephson
relationsd; = 2eV;/h linking the voltageandthe quantum
phasedifferenceacrosshejunctioni, theseequationdake
theform,
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wherer = h/2eR, R beingthe normalstateresistancef
thejunctions. Thetwo naturalexperimentalcontrol param-
etersarethe applieddc magneticflux ®. andthe dc bias
currentl;, which we take to be symmetricallyappliedto
theloop. It is corvenientto rescalgime by — andintroduce
ascaledlux ®., = ®./®, andbiascurrent] = I /(21y).
This systemexhibits two regimesof operation[5, 3].
For afixed®.,, asaddle-nodeonnectiortakesplacewhen
the bias current.J exceedsa critical value J.. For J <
J., the noiselessystemhastwo fixed points,onestable(a
node)and one unstable(a saddle). This is the “supercon-
ductingregime” with the potentialenegy function admit-
ting of stableminima correspondindo a currentconsera-
tion 2J = sind; + sind, . For J > J. the fixed points
disappearand we obtain oscillatory solutionswhose fre-
gueng obeysthe characteristisquare-rooscalinglaw [1].
Thislatterregimeis theso-called'runningregime”, andthe
propertieof thesolutionsnearthebifurcationhaverecently
beenstudied[3]. We extendthe modelequationg?2) to de-
scribea systenof globally linearly coupleddc SQUIDs, the

theoreticalvariablesof interestbeingthe Schibdingerphase
difference35§k) (j = 1,2) acrosseachJosephsoiunction
of thekt" SQUID (k=1,...,N):

;—’1(5](.’“) = Ji + (—1)11% —sind{?, ©)
wherel}, representshe circulatingcurrent,J, the normal-
ized (to Iy) externallyappliedbiascurrent,ly;, thecritical
currentof thejunctions,andr, = /(2eRy) is acharacter
istic time constani R, beingthe normalstateresistancef
thejunctions). Thecirculatingcurrentl, atthekth SQUID
isinducedn theloop by anexternalmagnetidlux &, which
is assumeddenticalfor all SQUIDs. EachSQUID isinduc-
tively coupledo theloop currentsof theremainingSQUIDs
with equalmutualinductancecouplingof strengthA. The
circulatingcurrentcanbewrittenin theform:

1
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wherepy, = 2n Ly Iy, /®o is the nonlinearityparameteof
the k** SQUID, L; beingits loop inductance. Note that
the circulatingcurrentl,,, appearingon theright handside
of (4) is itself a function of every othercirculatingcurrent.
In fact, it representsininfinite nestedseriesthatin general
cannotbe summedn closedform. However, in sucha case
anexpansionn powersof M canbeobtained.

3. GLOBALLY COUPLED SQUIDSWITHOUT
NOISE

As mentionedearlier a singledc SQUID exhibits two dif-
ferent statesof operation: a superconductingtatewhere
thelong-time phasesretime-independentnda “running
state”"characterizetly oscillatoryphasesQuantifyingsmall
changesn thefrequeng thatoccurin the presencef exter-
nal (target)signalscouldafford adetectiormechanismand
experimentdnvolving synchronizatiorio anexternalsignal
or to anotherSQUID would inevitably benefitfrom a priori
knowledgeof the oscillationfrequeng in termsof the bias
parameters.

Our calculationis madepossibleby the fact that close
to the singularpoint thereis a well-definedseparatiorof
time-scaleghat permitsa centermanifold reductionof the
effective phasespace.This rendershe dynamicsaccesible
to analyticcomputatiorcloseto the onsetof the bifurcation.
Thecompletecalculationsanbefoundin [4], hereweshav
the main stepsof sucha calculation. In afirst stepa local
analysiscloseto the singularpoint captureghe very slow
dynamicswhich is responsiblefor the long period of the
running state. Secondly we get a quantitatve expression
for therunningperiodby solvingthe evolution equationon



the centermanifold. The resultis increasinglyaccurateas
J = J., Je1 beingthe critical biascurrentcorresponding
to the SQUID with smaller. The evolution on the center
manifoldis givenby
62
B

1
+O((J_ Jcl)3)7 (5)

i = (J — J1)cos by —nsinby + aw? + 2y

wherefy, a, v, andn dependnthebiasparametersandthe
critical fixed point (seeRef. [5] for calculationaldetails),
ande = 27 M /®,. Integratingthelastequationwe obtain
the solution

F 2.4 2
vl(t)zwa—ﬂya;j tan(t Fa—’y%“)—%, (6)

whereF = (J — J.1) cos#; — nsinf;. Thus,for the fre-
gueng of therunningstatewe find

f=vFa—~2%*/2n (7)

Noticethatthefrequeng of therunningstatedecreasewhen
thecoupling(i.e. ) increasesln fact,thereexistsacritical
valueof the couplingabove whichthe oscillationfrequeng
is zero:too stronga coupling“kills” therunningstates.
Fig. 1(a) showvs a comparisonbetweenthe numerical
simulationsof thesystenof equationg3) andthefrequeny
obtainedby usingthe analyticalexpression(7) for the case
of N = 2. The agreemenbetweenthe numericalresults
and the analyticalresultsis excellent, particularly as ex-
pected,for small valuesof J — J.;. Fig. 1(b) showns a
similar comparisorfor thecaseof N = 3, andN = 4.

4. GLOBALLY COUPLED SQUIDSWITH NOISE

In this sectionwe presensomeresultsinvolving themodel
equationq3) in presencef thermalnoise,andin the limit
of infinitely mary SQUIDs. Specifically we investigatehe
system(3)-(4), up to order M2, in presenceof Gaussian
white noiseswith < §§”) (t)>=0, < 55” (t)gj.m’ ) >=
2D6;;01md(t — t').

We areinterestedn the analyticalinvestigationof the
Langevin dynamicsabove for the caseof very large N. A
neatpicture of sucha casecan be given by the limiting-
modelobtainedwhen N — oo (thermodynamidimit). In
this limit, it is well known [7] that modelswith mean-field
coupling are describedby an evolution equationfor one-

particleprobabilitydensity Suchaprobabilitydensityp(; , d=, t)

is asymptoticallyin the limit, N — oo, the solutionof the
following nonlinearFokker-Planckequation(FPE):
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Fig. 1. Comparisorbetweenthe numericalsimulationsof
the systemof equations(3), and the frequeng obtained
analyticallyfor @) N = 2, and(b) N = 3, N = 4
SQUIDs. Two differentvaluesof the biascurrentareused
in figure (a): J = Ja + 0.001, andJ = J. + 0.0005,
with J,; = 0.821152. Parameterare3; = 0.9,8: = 1,
Bs =1.1, 84 = 1.3, and®,, = 0.2.

Thedrift-termsaregivenby

’1)1((51,(52,t) =J - l((51 —(52 — 21

B
2 M -
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0
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I) — sin ds, (10)
0

with n chosenin orderto obtaina periodiccontinuationof
the coeficients. J, 3, and ®., arepickedup from a given
distribution, g(J), f(8), andh(®.,) respectiely, andthe



theaveragescreeningcurrentis now givenby

It = / dJg(J) / dpf(B) / dPeyh(®e;) /:ﬂ /0277

d61d(52%((51 - (52 —2mn — 277(1)5.1)[’(51, (52, t). (11)

The probability densityis requiredto be 2r-periodicasa
functionof §;, andd,, andnormalizedto one.

To studythe nonlinearFPEwe proposeda new numer
ical method,which consistsin a generalizatiorof a spec-
tral methodfor a singleSQUID alreadyderivedin [6]. The
ideais to expandp in Fourier series gxploiting the 2z- pe-
riodicity in d;, andd,. Introducingsuchexpansioninto the
Fokker-Planckequation,we obtain a infinite hierarchyof
ordinarydifferentialequationsor the momentsr*, where
theaveragescreeningourrent! is givenby,

I(t):% —87r22—(_ll)llm(rl_le_”“q’”) . (12)
=1

The numericalmethodconsistsof truncatingthe hierarchy
of first-order couplednonlineardifferentialequationsfor a
reasonablemumberof modesN = —N,...,N, andm =
—M,..., M, settingry"' = rZN¥ = = 0. Thenumberof
modesN, M shouldbe choserso large thanthe numerical
resultsdonotdependon N, and /.

In Fig. 2, we shav acomparisorbetweerthenumerical
solutionobtainedby meansof the Fokker-Planckapproach
for aone-SQJID probabilitydensity andthesolutionof the
Langevin equationsfor a large numberof SQUIDs (N =
500). It is remarkablethat the solutionof the FPE, corre-
spondingto thelimiting-modelobtainedwhen N — oo, is
seerto provide excellentagreementvith thefinite sizecase.
Thismanifestghefactthat NV = 1000 is alreadycloseto in-
finity for apracticalpurpose.

5. CONCLUSIONS

Thiswork representacontinuatiorof aline of researclinto
the behavior of dynamicalsystemsn the vicinity of bifur-
cations.Our focushasbeenon large arraysof suchoscilla-
tors, motivatedby earlierwork on the (potentially) positive
role of couplingfor a variety of signalprocessingpplica-
tions. Clearly, increasinghe couplingand/orthe numberof
coupledentitiesshouldafford a valuabletool for lowering
the spontaneousscillationfrequeng. In turn, this makesit
more corvenientto detectlow frequeng oscillationsin an
externalsignalby matchingthemto the runningfrequeny
(which playstherole of aninternal“clock”). Whenthetar-
getsignalis appliedto every SQUID, the enhancemernf
the spectralresponsas amplified; this is an extensionof
our work on single SQUID dynamicsin the presencef a
target signal and a noise-floor and elucidatesthe role of
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Fig. 2. Comparisonbetweenthe numerical simulation
of the Fokker-Planckequation(spectralmethod),and the
Langevin equationswith N = 500. SQUIDs are identi-
cal, andparameterare J, = 0.35, 8o = 1, ®.,, = 0.4,
M =0.01,andD =0.1.

coupling,aswell asthe necessityof choosingthe coupling
coeficientscarefully.
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